in the molecules labelled a in Table 1 a methyl hydrogen is almost coplanar with the nonhydrogen atoms, but perpendicular to them in the molecules labelled b. The average torsion angles (modulo 60°) over the $C(1)-C(2)$ bond and relative to any of the nitrogen atoms are $6(9)$ and $28(9)^{\circ}$, respectively. The methyl rotational barrier for this type of compounds is very low. Different types of calculations indicate a magnitude of a few $\mathrm{kJ} \mathrm{mol}^{-1}$ and the methyl-group orientation is most probably determined by intermolecular interactions. For further discussions on this subject on similar molecules, see e.g. Hagler, Leiserowitz \& Tuval (1976); Jeffrey, Ruble, McMullan, DeFrees, Binkley \& Pople (1980); Norrestam et al. (1983).

The molecular packing in the crystal structure is shown in Fig. 2. The structure is held together by inter alia an extensive net of intermolecular hydrogen bonds. The four symmetry-independent amino groups are hydrogen donors to two hydrogen bonds each, while the oxygen atoms of the carbonate ions are acceptors of three hydrogen bonds each. The $\mathrm{N} \cdot . . \mathrm{O}$ distances range from 2.757 (5) to 2.864 (5) \AA. The water molecule at $\mathrm{O}(w)$ participates (as hydrogen donor) in only one hydrogen bond, 2.830 (4) \AA, to one of the carbonate
oxygen atoms, O (1). Thus, the water molecule is rather loosely bonded in the structure. This is also reflected by the significantly higher thermal vibration parameter of $\mathrm{O}(w), U_{\mathrm{eq}}=0.090(2) \AA^{2}$, compared with the average value 0.018 (1) \AA^{2} of the other atoms.

References

Bolhuis, F. van (1971). J. Appl. Cryst. 4, 263-264
Cannon, J. R., White, A. H. \& Willis, A. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 271-272.
Crossland, I. \& Grevil, F. S. (1981). Acta Chem. Scand. Ser. B, 35, 605.
Hagler, A. T. Leiserowitz, L. \& Tuval, M. (1976). J. Am. Chem. Soc. 98, 4600-4612.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Jeffrey, G. A., Ruble, J. R., McMullan, R. K., De Frees, D. J., Binkley, J. S. \& Pople, J. A. (1980). Acta Cryst. B36, 2292-2299.
Norrestam, R. (1981). VANDER. Program for Raster Plot Representation of Crystal and Molecular Structures. Technical Univ. of Denmark.
Norrestam, R. (1982). XTAPL. Interactive APL Programs for Crystal Structure Calculations. Technical Univ. of Denmark.
Norrestam, R., Mertz, S. \& Crossland, I. (1983). Acta Cryst. C38, 1554-1556.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Thujaplicatin Methyl Ether, $\mathrm{C}_{21} \mathbf{H}_{24} \mathbf{O}_{\mathbf{7}}$

By Mino R. Caira
University of Port Elizabeth, Port Elizabeth, South Africa
William H. Watson*
FASTBIOS Laboratory, Department of Chemistry, Texas Christian University, Forth Worth, TX 76129, USA
and Mario Silva
Universidad de Concepción, Concepción, Chile

(Received 21 June 1983; accepted 30 September 1983)

Abstract

M_{r}=388 \cdot 4\), monoclinic, $P 2_{1}, a=11.715$ (2), $b=10.815(1), \quad c=7.411(1) \AA, \quad \beta=92.66(1)^{\circ}, \quad V$ $=983.0(2) \AA^{3}, \quad Z=2, \quad D_{m}=1.365(5), \quad D_{x}=1.375$ $\mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \mu=0.87 \mathrm{~mm}^{-1}, F(000)$ $=412 \cdot 0, T=298 \mathrm{~K}, R=0.033$ for 1314 unique reflections. The lactone ring has a twist conformation [torsion angle $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{O} 27.6(3)^{\circ}$] and the substituent carbon atoms at the 2 - and 3 -positions are trans to one another. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydro-

[^0]gen bonding involving both the carbonyl and phenolic groups stabilizes the crystal structure. The absolute configuration assigned previously by circular dichroism studies has been confirmed.

Introduction. Podocarpus saligna D. Don is one of three species of Podocarpus native to Chile. The constituents daucosterin, fern-9(11)-ene, isofernene, β-sitosterol and n-nonacosane (Bhakuni, Bittner, Sammes \& Silva, 1974) as well as more than ten norand bisnorditerpene dilactones (Zabel, Watson, Silva, © 1984 International Union of Crystallography

Bittner \& Langs, 1980; Watson, Zabel, Silva \& Bittner, 1982) have been isolated from the roots and leaves of P. saligna. The nor- and bisnorditerpene dilactones from Podocarpus species exhibit a variety of biological activities, and chemical investigations of these species are still in progress. The compound thujaplicatin methyl ether was isolated from the roots of P. saligna. The same compound has been isolated from Thuja standishii and the absolute configuration assigned by circular dichroism (CD) studies (Nishibe, Hisada \& Inagaki, 1974). The structure and confirmation of absolute configuration are reported.

Experimental. Details of data collection and leastsquares refinement given in Table 1. All but one of the non-hydrogen atoms located in E map phased by MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978); remaining C atom and most H atoms revealed in subsequent difference syntheses, but the latter included at geometrically constrained positions $\left(\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}=1.08 \AA\right.$) with $U_{\text {iso }}$ held at 1.5 times those of parent atoms; anisotropic temperature factors assigned to all non-hydrogen atoms in final cycles of refinement; all calculations performed with XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976); anomalous dispersion correction for O scattering factors (International Tables for X-ray Crystallography, 1962) applied to distinguish absolute configuration by the R-factor ratio test (Hamilton, 1965).*

[^1]Table 1. Experimental and refinement parameters

```
Density measurement
Crystal dimensions (mm)
Diffractometer system
Lattice parameters
\((\sin \theta / \lambda)_{\text {max }}\) for intensity measurements \(\left(\AA^{-1}\right)\)
( \(h k l_{\text {min }}\)
\((h k)_{\text {max }}\)
Scan mode
Scan speed
Indices of standard reflection
Stability of standard reflection
Absorption corrections
Number of reflections measured
Number of unique reflections
Number of observed reflections \([I>3 \sigma(I)]\)
Quantity minimized
Number of parameters refined
\(R\)
\({ }^{w} R\)
Average \(\Delta / \sigma\)
Maximum \(\Delta / \sigma\)
Constrained \(U_{\text {iso }}(H)\)
Highest \(\Delta \rho\) excursion in difference map
```

```
Flotation in aq. KI \(0.43 \times 0.43 \times 0.31\)
Syntex \(P 2\),
Least-squares refinement
of angular data for 15
reflections \(\left(6.0<\theta<14.1^{\circ}\right)\)
0.562
\(\begin{array}{lll}0 & 0 & -8 \\ 12 & 11 & 8\end{array}\)
12118
\(\theta: 2 \theta\)
Variable: range
\(3.91-29.30^{\circ} \mathrm{min}^{-1}\)
\(0 \quad 0 \quad 1\)
\(\pm 0.7 \%\)
None
1478
1478
1356
1314
\(\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\),
\(w=1 / \sigma^{2}\left(F_{0}\right)\)
252
0.033
0.047
2.944
0.12
1. 04
Range: \(0.063-0.104 \AA^{2}\) 0.17 e A \(^{-3}\)
```

Table 2. Fractional atomic coordinates $\left(\times 10^{4}\right)$ for non-hydrogen atoms and equivalent isotropic thermal parameters $U_{\mathrm{eq}}\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

	x	y	z	$U_{\text {eq }}{ }^{*}$
C(1)	8063 (3)	4265	4783 (5)	52 (2)
$\mathrm{O}(1)$	7745 (2)	5274 (2)	4353 (4)	65 (1)
C(2)	8411 (2)	3209 (3)	3558 (4)	43 (2)
C(3)	8531 (2)	2103 (3)	4838 (4)	42 (2)
C(4)	8720 (3)	2721 (4)	6666 (4)	53 (2)
O(5)	8156 (2)	3920 (3)	6513 (3)	61 (1)
C(6)	7603 (2)	3075 (3)	1869 (4)	45 (2)
C(7)	6366 (2)	2850 (3)	2257 (4)	41 (1)
C(8)	5652 (2)	3849 (3)	2528 (4)	43 (2)
C(9)	4524 (2)	3673 (3)	2955 (4)	42 (2)
C(10)	4099 (2)	2482 (3)	3140 (4)	44 (2)
C(11)	4794 (3)	1488 (3)	2807 (4)	47 (2)
C(12)	5926 (2)	1660 (3)	2360 (4)	44 (2)
O(9)	3764 (2)	4608 (2)	3250 (3)	53 (1)
$\mathrm{O}(10)$	2997 (2)	2338 (2)	3624 (3)	55 (1)
$\mathrm{O}(11)$	4265 (2)	372 (3)	2971 (4)	70 (2)
C(13)	4083 (3)	5810 (4)	2681 (5)	63 (2)
C(14)	4853 (4)	-723 (4)	2491 (5)	67 (2)
C(15)	9495 (3)	1195 (3)	4466 (4)	49 (2)
C(16)	9343 (2)	557 (3)	2665 (4)	44 (2)
C(17)	8498 (3)	-330 (3)	2377 (4)	49 (2)
C(18)	8305 (2)	-865 (3)	693 (4)	45 (2)
C(19)	8980 (2)	-543 (3)	-725 (4)	43 (2)
$\mathrm{O}(18)$	7442 (2)	-1678(3)	276 (3)	70 (2)
O(19)	8816 (2)	-1060 (2)	-2411 (3)	52 (1)
C(20)	9848 (3)	306 (3)	-433 (4)	49 (2)
C(21)	10024 (3)	855 (3)	1248 (4)	48 (2)
C(22)	7291 (3)	-2684 (4)	1461 (6)	72 (2)
$\begin{aligned} * & U_{e q}=\frac{1}{3}\left[U_{11}\left(a a^{*}\right)^{2}+U_{22}\left(b b^{*}\right)^{2}+U_{33}\left(c c^{*}\right)^{2}+2 U_{13} a c a^{*} c^{*} \cos \beta\right. \\ + & \left.2 U_{23} b c b^{*} c^{*} \cos \alpha+2 U_{12} a^{*} b^{*} a b \cos \gamma\right] . \end{aligned}$				

Table 3. Interatomic distances (\AA) and principal torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.192(3)$	$\mathrm{C}(10)-\mathrm{O}(10)$	$1.365(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.526(4)$	$\mathrm{C}(11)-\mathrm{O}(11)$	$1.365(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.529(4)$	$\mathrm{C}(13)-\mathrm{O}(9)$	$1.422(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.518(4)$	$\mathrm{C}(14)-\mathrm{O}(11)$	$1.423(5)$
$\mathrm{C}(4)-\mathrm{O}(5)$	$1.457(5)$	$\mathrm{C}(3)-\mathrm{C}(15)$	$1.531(4)$
$\mathrm{O}(5)-\mathrm{C}(1)$	$1.335(4)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.506(4)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.541(4)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.388(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.510(3)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.385(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.387(4)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.389(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.386(4)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.380(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.390(4)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.387(4)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.378(5)$	$\mathrm{C}(21)-\mathrm{C}(16)$	$1.386(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.394(4)$	$\mathrm{C}(18)-\mathrm{O}(18)$	$1.364(4)$
$\mathrm{C}(12)-\mathrm{C}(7)$	$1.390(4)$	$\mathrm{C}(19)-\mathrm{O}(19)$	$1.374(4)$
$\mathrm{C}(9)-\mathrm{O}(9)$	$1.372(4)$	$\mathrm{C}(22)-\mathrm{O}(18)$	$1.414(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$-58.5(3)$	$\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-71.1(4)$	
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$86.7(3)$	$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(15)$	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(15)-\mathrm{C}(16)-63.5(3)$			

Discussion. Table 2 lists final atomic coordinates. Bond lengths and principal torsion angles are listed in Table 3.

Fig. 1 is a perspective view of the molecule showing the thermal ellipsoids of the non-hydrogen atoms and the numbering scheme. All data refer to the $2 R, 3 R$ absolute configuration. The ratio $w R(2) / w R(1)$ (1 $=2 R, 3 R, \quad 2=2 S, 3 S)$ is 1.02 while $\mathscr{R}_{1,1062,0.005}$ $=1.004$ (Hamilton, 1965), indicating that the $2 S, 3 S$ configuration can be rejected at the 0.5% level. This is
consistent with the CD assignment of the $2 R, 3 R$ configuration to thujaplicatin methyl ether isolated from Thuja standishii (Gord.) Carr. (Nishibe, Hisada \& Inagaki, 1974). The overall molecular conformation is best described in terms of the principal torsion angles (Table 3). Bond lengths and valence angles in the lactone ring are similar to those reported elsewhere (Conde, Moreno \& Márquez, 1980). The ring displays a twist conformation. Atoms $\mathrm{O}(1), \mathrm{C}(1), \mathrm{C}(2)$ and $\mathrm{O}(5)$ are coplanar [max. deviation from the least-squares plane $0.0004 \AA$] while atoms $C(3)$ and $C(4)$ are respectively 0.24 and $0.20 \AA$ above and below the plane as viewed in Fig. 1 (uncertainties in the atomic positions at the 5% level average $0.01 \AA$). A trans relationship between the substituents at $C(2)$ and $C(3)$ is evident from the torsion angle $\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-$ $\mathrm{C}(15)$, the deviation from 120° being due to the ring pucker. Mean-plane calculations show that the hydroxydimethoxybenzyl moiety has symmetry approximating $C_{2 v}$. The carbonyl O atom and the two phenolic O atoms participate in two crystallographically distinct hydrogen bonds: $\mathrm{C}(1)=\mathrm{O}(1) \cdots \mathrm{H}\left(10^{\mathrm{i}}\right)-$ $\mathrm{O}\left(10^{\mathrm{i}}\right)$ with $\mathrm{O} \cdots \mathrm{O} 2.847(3), \mathrm{O} \cdots \mathrm{H} 1.853(3) \AA$, and $\mathrm{O}(10) \cdots \mathrm{H}\left(19^{\mathrm{i}}\right)-\mathrm{O}\left(19^{\mathrm{i}}\right)$ with $\mathrm{O} \cdots \mathrm{O} 2.854(3), \mathrm{O} \cdots \mathrm{H}$ $1.860(2) \AA\left[(\mathrm{i})=1-x, \frac{1}{2}+y, 1-z\right]$. Each molecule is thus linked to 2_{1}-related molecules by four hydrogen bonds, atom $\mathrm{O}(10)$ acting as both donor and acceptor.

We thank the Robert A. Welch Foundation (P-074), the National Science Foundation (INT-7810451), the CSIR (Pretoria), the University of Port Elizabeth and CONICYT of Chile for their financial support. This is FASTBIOS contribution No. 104.

References

Bhakuni, D. S., Birtner, M., Sammes, P. G. \& Silva, M. (1974). Rev. Latinoam. Quim. 5, 163-168.
Conde, A., Moreno, E. \& MÁrquez, R. (1980). Acta Cryst. B36, 1713-1715.

Fig. 1. ORTEP plot (Johnson, 1971) of the title molecule. Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Hamilton, W. C. (1965). Acta Cryst. 18, 502-5 10.
International Tables for X-ray Crystallography (1962). Vol. III, p. 214. Birmingham: Kynoch Press.

Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J. P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Univs. of York, England, and Louvain, Belgium.
Nishibe, S., Hisada, S. \& Inagaki, I. (1974). Yakugaku Zasshi, 94(4), 522-524.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976) The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Watson, W. H., Zabel, V., Silva, M. \& Bittiner, M. (1982). Acta Cryst. B38, 588-592.
Zabel, V., Watson, W. H., Silva, M., Bittner, M. \& Langs, D. A. (1980). Acta Cryst. B36, 2660-2663.

Structure of $\mathbf{1 H}$-Azepine-2,5-dione $\mathbf{5}$-(O -Methyloxime), $\mathrm{C}_{\mathbf{7}} \mathbf{H}_{\mathbf{8}} \mathbf{N}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}$

By Don T. Cromer, Robert R. Ryan and D. Scott Wilbur
University of California, Los Alamos National Laboratory, PO Box 1663, MS C346, Los Alamos, New Mexico 87545, USA

(Received 8 August 1983; accepted 15 September 1983)

$$
\begin{aligned}
& \text { Abstract. } M_{r}=152.15, \text { triclinic, } P \overline{1}, \quad a=3.877(2), \\
& b=9.522(2), c=10.674(2) \AA, \alpha=107.99(2), \quad \beta= \\
& 97.66(3), \gamma=98.50(3)^{\circ}, V=363.9 \AA^{3}, Z=2, D_{x}= \\
& 1.388 \mathrm{Mg} \mathrm{~m}^{-3}, \quad \text { Mo } K \alpha\left(\lambda \alpha_{1}=0.70926 \AA\right), \quad \mu= \\
& 0108-2701 / 84 / 020301-03 \$ 01.50
\end{aligned}
$$

Abstract

$0.0975 \mathrm{~mm}^{-1}, F(000)=160, T \sim 293 \mathrm{~K}, R=0.030$, 825 unique observed reflections. Compound synthesized in this laboratory. The seven-membered ring is virtually planar, although the bond lengths indicate little (c) 1984 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

 0108-2701/84/020299-03\$01.50

[^1]: * Lists of hydrogen-atom coordinates, anisotropic thermal parameters, valence angles, selected torsion angles, equations of least-squares planes and structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38937 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

